Semiempirical equation for the excess volumes in simple liquid mixtures and polymer solutions

S. Saeki, M. Tsubokawa, J. Yamanaka and T. Yamaguchi

Department of Materials Science and Engineering, Fukui University, Fukui 910, Japan (Received 15 May 1991; revised 2 July 1991; accepted 5 August 1991)

A semiempirical equation for the excess volume Δv_m in simple liquid mixtures such as $Ar-N_2$, methane-ethane and benzene-cyclohexane, and polymer solutions such as polyisobutylene-benzene and polystyrene-cyclohexane, has been derived based on the experimental data of Δv_m for simple liquid mixtures by Calado *et al.* and Rabio *et al.* and for polymer solutions by Flory *et al.* and Patterson *et al.* The expression for the specific volume of mixtures v_m obtained in this work is given by

 $v_{\rm m} = v_0^{\circ} (v_1^{\circ} / v_0^{\circ})^{Y(x_1)}$

where

$Y(x_1) = [2^n/(2^n - 1)] - [(2 - x_1)^n(2^n - 1)^{-1}]$

and where v_0° and v_1° are the specific volumes of solvent (0) and solute (1), respectively, in the pure state, x_1 is the mole fraction of solute (1) and $n(\neq 0)$ is a function of temperature and pressure. Values of *n* at 1 atm and 20-25°C for various mixtures including polymer solutions range from -1.1 to 5.5. It is found that Δv_m is negative for mixtures with $v_1^{\circ}/v_0^{\circ} < 1$, while $\Delta v_m > 0$ for $v_1^{\circ}/v_0^{\circ} > 1$ in most simple mixtures except for polymer solutions with $\Delta v_m > 0$.

(Keywords: excess volume; simple liquid mixture; polymer solution; semiempirical equation; specific volume of mixture)

INTRODUCTION

The excess volume Δv_m is an important quantity in characterizing solution properties of mixtures and its theoretical prediction has been extensively carried out in simple liquid mixtures and polymer solutions. Calado *et al.*¹⁻⁵ and Machado *et al.*⁶ have investigated Δv_m for mixtures containing Kr, Xe, methane and hydrogen chloride to develop a molecular theory of solutions including systems showing multipolar interactions. Nakata and Sakurai⁷ have investigated the relationship between excess refractive index and excess volume. Flory et al. have derived the equation of state for liquids and liquid mixtures and applied it to simple liquid mixtures and polymer solutions⁸⁻²⁰. An investigation of Δv_m in mixtures containing branched and cycloalkanes and fluoro- and chlorocarbon has been carried out by Rubio et al.²¹⁻²⁴. Patterson and Bardin have tested the Prigogine theory of corresponding states based on the experimental data for n-alkane mixtures²⁵. Theoretical studies on simple mixtures have been carried out by Streett and Staveley²⁶, Leonard *et al.*²⁷, Longuet-Higgins²⁸, Snider and Herrington²⁹, Leland *et al.*³⁰ and Rowlinson and Swinton^{31,32}.

In this study we have derived a semiempirical equation for the excess volume or specific volume for mixtures based on essentially the same mathematical procedure as that used for deriving an equation of state³³.

0032-3861/92/112382-06

© 1992 Butterworth-Heinemann Ltd.

2382 POLYMER, 1992, Volume 33, Number 11

DERIVATION OF SEMIEMPIRICAL EQUATION FOR SPECIFIC VOLUME AND EXCESS VOLUMES IN MIXTURES

It is assumed that a specific volume of mixture is expressed by

$$v_{\rm m} = a_0(T, P)(\partial v_{\rm m}/\partial n_0)_{T, P, n_1} n_0 f(n_0, n_1, T, P) \quad (1)$$

where $a_0(T, P)$ is a function of temperature and pressure, n_0 and n_1 are the number of molecules of solvent (0) and solute (1), respectively, and $f(n_0, n_1, T, P)$ is a function of n_0, n_1, T and P. It is useful to introduce the mole fraction for a simple liquid mixture:

$$x_i = n_i / (n_0 + n_1)$$
 (2)

and the volume fraction for a polymer solution:

$$b_i = n_i \bar{v}_i^{\circ} / (n_0 \bar{v}_0^{\circ} + n_1 \bar{v}_1^{\circ}) = x_i V_i^{\circ} / (x_0 V_0^{\circ} + x_1 V_1^{\circ})$$
(3)

where \bar{v}_i° is a molecular volume of component *i* and V_i° is the molar volume. Equation (1) can be rewritten using equation (2):

$$v_{\rm m} = a_0(T, P)(\partial v_{\rm m}/\partial x_0)_{T, P, n_1} x_0 x_1 f(n_0, n_1, T, P) \quad (4)$$

and a similar equation is derived from equations (1) and (3):

$$v_{\rm m} = a_0(T, P)(\partial v_{\rm m}/\partial \phi_0)_{T, P, n_1} \phi_0 \phi_1 f(n_0, n_1, T, P) \quad (5)$$

Equations (4) and (5) are essentially the same and the

following derivation is carried out for equation (4).

By taking the derivative of equation (4) with respect to x_0 :

$$(\partial v_{\rm m}/\partial x_0)_{T,P,n_1} = a_0 (\partial^2 v_{\rm m}/\partial x_0^2) x_1 x_0 f$$

+ $a_0 (\partial v_{\rm m}/\partial x_0) (x_1 - x_0) f$
+ $a_0 (\partial v_{\rm m}/\partial x_0) x_0 x_1 (\partial f/\partial x_0)$ (6)

By dividing equation (6) by $a_0(\partial v_m/\partial x_0)x_0x_1f$:

$$(a_0 x_0 x_1 f)^{-1} = (\partial^2 v_m / \partial x_0^2) / (\partial v_m / \partial x_0) + x_0^{-1} - x_1^{-1} + (\partial f / \partial x_0) / f$$
(7)

By integrating equation (7) with respect to x_0 from 0 to x_1 :

$$(\partial v_{\rm m}/\partial x_0) = (x_0 x_1 f)^{-1} c_0 \times \exp\left\{a_0^{-1} \int_0^{x_1} \left[dx_0/(x_0 x_1 f)\right]\right\} (8)$$

The specific volume of the mixture v_m is obtained using equations (4) and (8):

$$v_{\rm m} = a_0 c_0 \exp\left\{a_0^{-1} \int_0^{x_1} \left[\, \mathrm{d}x_0 / (x_0 x_1 f) \right] \right\} \qquad (9)$$

The following simple equation is derived using the conditions that $v_m(x_0 = 0) = v_1^\circ$ and $v_m(x_0 = 1) = v_0^\circ$:

$$v_1^\circ = a_0 c_0 \exp a_0^{-1} \int_0^1 \left[\mathrm{d}x_0 / (x_0 x_1 f) \right]$$
 (10)

and

$$v_0^\circ = a_0 c_0 \tag{11}$$

From equations (10) and (11):

$$a_0^{-1} = \ln(v_1^{\circ}/v_0^{\circ}) \bigg/ \int_0^1 \left[dx_0 / (x_0 x_1 f) \right]$$
(12)

The final expression for v_m is:

$$v_{\rm m} = v_0^{\circ} \exp Y(x_0, T, P) \ln(v_1^{\circ}/v_0^{\circ})$$

= $v_0^{\circ} (v_1^{\circ}/v_0^{\circ})^{Y(x_0, T, P)}$ (13)

where

$$Y(x_0, T, P) = \int_0^{x_1} \left[\frac{dx_0}{x_0 x_1 f} \right] \left| \int_0^1 \left[\frac{dx_0}{x_0 x_1 f} \right] \right|$$
(14)

The excess volume $\Delta v_{\rm m}$ using equation (13) is given by :

$$\Delta v_{\rm m} = v_{\rm m} - w_0 v_0^\circ - w_1 v_0^\circ \tag{15}$$

$$= v_0^{\circ} (v_1^{\circ} / v_0^{\circ})^{Y(x_0, T, P)} - w_0 v_0^{\circ} - w_1 v_1^{\circ} \qquad (16)$$

where w_1 is the weight fraction $[w_i = m_i/(m_0 + m_1)]$, where m_i is the mass of component i].

METHOD OF ANALYSING EXPERIMENTAL DATA OF ΔV_{M}

The experimental data published for the excess volume or volume of mixtures are given by various expressions such as $\Delta V_{\rm M}$ (cm³ mol⁻¹) and $\Delta V_{\rm M}/V^{\circ}$, which must be converted to $v_{\rm m}$ (cm³ g⁻¹) to examine the equations in this study. The conversion was carried out using the following equations:

$$v_{\rm m} = V_{\rm M}/(x_0M_0 + x_1M_1)$$

= $\Delta V_{\rm M}/(x_0M_0 + x_1M_1) + w_0v_0^\circ + w_1v_1^\circ$ (17a)

and

$$v_{\rm m} = (1 + \Delta v_{\rm m_0} / v^{\circ}) / (\phi_0 / v_0^{\circ} + \phi_1 / v_1^{\circ})$$
 (17b)

where $v^{\circ} = w_0 v_0^{\circ} + w_1 v_1^{\circ}$.

It is important to determine the functions Y or f in equation (14). It is pointed out by equation (8) that the function f must be expressed by $f^{-1} = x_0 x_1 h(x_0, T, P)$ to avoid divergence of $(\partial v_m / \partial x_0)$ at the limit of $x_0 \to 0$ and $x_1 \to 0$ and by equation (14) that $Y(x_0 = 0) = 1.0$ and $Y(x_0 = 1.0) = 0$. The expression for $Y(x_0)$ is given by:

$$Y(x_0, T, P) = \int_0^{x_1} h(x_0, T, P) \, \mathrm{d}x_0 \Big/ \int_0^1 h(x_0, T, P) \, \mathrm{d}x_0$$
(18)

where $h(x_0, T, P)$ is a function of x_0 , T and P. One of the simplest expressions which satisfies the above conditions is:

$$Y(x_0) = -a(2 - x_1)^n + b \qquad n \neq 0$$
(19)

where $a = (2^{n} - 1)^{-1}$, $b = 2^{n}/(2^{n} - 1)$ and *n* is a function of *T* and *P*.

It is of particular interest to find the determining factors for the sign of $\Delta v_{\rm m}$. It is well known that the sign of the second derivative of $v_{\rm m}$ with respect to concentration $(\partial^2 v_{\rm m}/\partial x_0^2)$ is negative for $\Delta v_{\rm m} > 0$, while it is positive for $\Delta v_{\rm m} < 0$. The expression for $(\partial^2 v_{\rm m}/\partial x_i^2)$ calculated by equation (13) is given by:

$$(\partial^2 v_{\rm m}/\partial x_0^2) = v_{\rm m} [\ln(v_1^\circ/v_0^\circ)] (\partial Y/\partial x_0)^2 \times [\ln(v_1^\circ/v_0^\circ) + (\partial^2 Y/\partial x_0^2)/(\partial Y/\partial x_0)^2]$$
(20)

where two factors, $\ln(v_1^{\circ}/v_0^{\circ})$ and the second term in the square brackets in equation (20), determine the sign of $\Delta v_{\rm m}$. Evaluation of the second term is done using equation (19):

$$-(\partial^2 Y/\partial x_0^2)/(\partial Y/\partial x_0)^2 = (2^n - 1)(n - 1)/[n(2 - x_1)^n]$$
(21)

The lines satisfying $(\partial^2 v_m / \partial x_0^2) = 0$ are calculated by equations (20) and (21) with $x_1 = 0.5$ (*Figure 1*). It is estimated from equation (20) that regions I and III in *Figure 1* correspond to $(\partial v_m^2 / \partial x_0^2) < 0$ or $\Delta v_m > 0$, while regions II and IV correspond to $(\partial^2 v_m / \partial x_0^2) > 0$, $\Delta v_m < 0$.

RESULTS

The experimental data for $\Delta V_{\rm M}$ and $V_{\rm M}$ published by many authors are analysed based on the equations in this work [equations (13), (17) and (19)]. Figure 1 plots *n versus* v_1°/v_0° and lines for distinguishing $\Delta v_{\rm m} > 0$ from $\Delta v_{\rm m} < 0$ calculated using equation (20) are also shown. Values of *n* in this work are obtained by the best fit with data for $\Delta v_{\rm m}$ at a concentration such as $x_1 = 0.5$ and for $\Delta v_{\rm m} = 0$ at $x_1 = 0$ and 1.0. Values for *n*, v_1°/v_0° , $\Delta V_{\rm M}$ (observed) and $V_{\rm c}$ are given in Tables 1-4. A good prediction for the sign of $\Delta v_{\rm m}$ is obtained using equation (13) for all regions. (All data from the references are not used because in some cases there is no information on v_i° and in some mixtures $V_{\rm c}$ is unknown^{39,40,43-45,47,48}.)

It is very important to discuss how to determine and distinguish a solute from a solvent in a mixture, particularly in a simple liquid mixture such as $Ar-O_2$ or $C_2H_6-C_2H_4$. In this work we have taken a solute which

Figure 1 Plot of *n* versus v_1°/v_0° for the various mixtures indicated in *Tables 1-4*. The values of *n* are determined from experimental data and equations (13) and (19): (\bigcirc) systems with $\Delta v_{\rm M} > 0$; (\bigcirc) systems with $\Delta v_{\rm M} < 0$. The solid lines are calculated using equations (20) and (21) with $x_1 = 0.5$ and indicate that regions I and III are $\Delta v_{\rm M} > 0$, while regions II and IV are $\Delta v_{\rm M} < 0$

has a larger value for V_c/V in the pure state than that of the other component. The term V_c/V gives the number of molecules within the critical volume V_c where V_c is a measure of the effective range of interaction for a molecule at the centre of V_c . Therefore, a liquid with a large V_c/V is a dense liquid compared to that with small V_c/V and is diluted if it is mixed with the liquid with small V_c/V . The former liquid has the characteristic properties of a solute and the latter has those of a solvent.

It is interesting to point out from equation (20) that $\Delta v_{\rm m}$ is zero for a system with $v_1^{\circ}/v_0^{\circ} = 1.0$, which leads to the obvious and reasonable result that $\Delta v_{\rm m} = 0$ when

a liquid is mixed with the same liquid. The nearest value of v_1°/v_0° to 1.0 observed in this work is $v_1^{\circ}/v_0^{\circ} = 1.020$ in *p*-xylene-C₆H₆ where Δv_m (cm³ g⁻¹) = 2.24 × 10⁻³. It is also found that values of *n* depend slightly on temperature as shown in *Tables 1-4*. For example, *n* for n-C₁₆H₃₄- n-C₈H₁₈ is 3.02 at 293 K and 3.19 at 379 K. It is also interesting to examine what happens if the definitions for solute and solvent are exchanged. The values of *n* then shift to new positions which are opposite and symmetrical with respect to the point (1, 1) in *Figure 1*. Therefore most of the points shift to a new region with the same sign of Δv_m such as I \leftrightarrow III and II \leftrightarrow IV (*Figure 1*).

Table 1	Excess	volume	of	mixing	$\Delta v_{\rm m}$	in	region I	
---------	--------	--------	----	--------	--------------------	----	----------	--

Solute (1)	$\frac{M_{w}}{(g \text{ mol}^{-1})}$	v_i° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 1}^{\circ}$	Solvent (0)	<i>M</i> _w (g mol ⁻¹)	v_0° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 0}^{\circ}$	T (K)	v_1°/v_0°	$\frac{\Delta V_{\rm m}(x_1)_{\rm obs.}}{({\rm cm}^3 {\rm mol}^{-1})}$	п	 No. (point) 	Ref.
C₂H ₆	30.070	1.7475	2.816	C ₂ H ₄	28.054	1.7279	2.661	161.4	1.0113	0.153(0.464)	4.91	1	5
C ₆ H ₆	78.114	1.1445	2.897	CS ₂	76.131	0.7962	2.805	298	1.438	0.526(0.5)	1.84	2	32
n-C ₇ H ₁₆	100.205	1.4721	2.928	C6H6	78.114	1.1445	2.897	298	1.2862	0.62 (0.5)	2.38	3	9
n-C ₈ H ₁₈	163.541	1.4317	3.008	C ₆ H ₆	78.114	1.1445	2.897	298	1.2509	0.73 (0.5)	3.87	4	23
n-C14H30	198.394	1.3106		C ₆ H ₆	78.114	1.1445	2.897	298	1.1450	1.10 (0.5)	4.81	5	22
n-C16H34	226.448	1.2992		C ₆ H ₆	78.114	1.1445	2.897	298	1.1351	1.17 (0.5)	5.31	6	22
cycC ₈ H ₁₆	112.216	1.2018		C ₆ H ₆	78.114	1.1445	2.897	298	1.0515	0.586(0.5)	3.59	7	23
CH3-C6H5	92.141	1.1726	2.925	C6H6	78.114	1.1578	2.864	308	1.0128	0.074(0.5)	2.23	8	49
p-Xylene	106.168	1.1674	3.058	C6H6	78.114	1.1445	2.897	298	1.020	0.207(0.499)	3.22	9	38
n-C ₇ H ₁₆	100.205	1.4629	2.947	cycC ₆ H ₁₂	84.162	1.2844	2.849	293	1.1806	0.30 (0.5)	1.93	10	9
n-C14H30	198.394	1.3106		C ₆ F ₆	186.056	0.6228		298	2.1043	2.13 (0.5)	2.48	11	22
n-C16H34	226.448	1.2992		C ₆ F ₆	186.056	0.6228		298	2.086	2.19 (0.5)	2.86	12	22
m-Xylene	106.168	1.1574	3.0599	Aniline	93.129	0.9783	2.963	293	1.1829	0.064(0.548)	1.67	13	41
p-Xylene	106.168	1.1614	3.0736	Aniline	93.129	0.9783	2.963	293	1.1870	0.030(0.486)	1.66	14	41
o-Xylene	106.168	1.1364	3.0584	Aniline	93.129	0.9783	2.963	293	1.1615	0.172(0.472)	1.75	15	41
n-C ₆ H ₁₄	86.178	1.5267	2.812	CS ₂	76.131	0.7962	2.805	298	1.917	0.248(0.5)	2.38	16	32
n-C ₁₆ H ₃₄	226.448	1.2932		CCl₄	153.823	0.6312	2.843	298	2.049	0.67 (0.5)	3.29	17	32
cycC ₈ H ₁₆	112.216	1.2018		ClC ₆ H ₅	112.559	0.9083	3.012	298	1.1104	0.395(0.48)	1.55	18	23

Table 2 Excess volume of mixing Δv_m in region II

Solute (1)	M_{w} (g mol ⁻¹)	v ₁ (cm ³ g ⁻¹)	V_{c}/V_{1}°	Solvent (0)	M _w (g mol ⁻¹)	v ₀ (cm ³ g ⁻¹)	$V_{ m c}/V_{ m 0}^{\circ}$	T (K)	v_1°/v_0°	$\frac{\Delta V_{m}(x_{1})}{(\text{cm}^{3} \text{ mo})}$	obs. ⁴ ⁻¹)	n	No. (point)	Ref.
n-C ₇ H ₁₆	100.205	1.4721	2.928	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.96423	-0.023	(0.5)	1.45	20	50
n-C ₈ H ₁₈	114.232	1.4225	3.027	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.9317	-0.082	(0.5)	1.83	21	50
n-C ₉ H ₂₀	128.259	1.3928	3.068	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.9123	-0.149	(0.5)	2.18	22	50
$n-C_{10}H_{22}$	142.286	1.3699	3.094	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.8973	-0.225	(0.6)	2.45	23	50
n-C ₁₁ H ₂₄	156.313	1.3514	3.125	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.8852	-0.294	(0.6)	2.73	24	50
n-C ₁₂ H ₂₆	170.340	1.3369		n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.8757	-0.35	(0.6)	2.98	25	50
n-C ₁₆ H ₃₄	226.448	1.2937		n-C ₆ H ₁₄	86.178	1.5174	2.829	293	0.8526	-0.49	(0.5)	3.90	26	11
n-C16H34	226.448	1.3407		n-C ₆ H ₁₄	86.178	1.6074	2.671	333	0.8341	-0.97	(0.5)	4.01	27	11
n-C16H34	226.448	1.2932		n-C ₇ H ₁₆	100.205	1.4629	2.947	293	0.8839	-0.31	(0.5)	3.43	28	11
n-C16H34	226.448	1.3610		n-C-H16	100.205	1.5752	2,738	349	0.8640	-0.77	(0.5)	3.56	29	11
n-C16H14	226.448	1.2931		n-C.H.	114.232	1.4238	3.026	293	0.9082	-0.19	(0.5)	3.02	30	11
n-C16H14	226.448	1.4013		n-C.H	114.232	1.5884	2.712	379	0.8822	-0.74	(0.5)	3.19	31	11
n-C ₀ H ₂₀	128.259	1.3928	3.068	n-C ₇ H ₁₆	100.205	1.4721	2.928	298	0.9461	-0.043	(0.5)	1.71	32	46
n-C, H ₁₄	156.313	1.3514	3.125	n-C-H16	100.205	1.4721	2.928	298	0.9180	-0.138	(0.5)	2.31	33	46
n-C ₂₀ H ₄	282.556	1.2898		n-C ₇ H ₁₆	100.203	1.5004	2.873	313	0.8596	- 0.550	(0.5)	4.13	34	46
n-C ₂₀ H ₄₂	282.556	1.3237		n-C ₇ H ₁	100.203	1.5619	2.760	343	0.8475	-0.863	(0.5)	4 20	35	46
n-C ₁₆ H ₇₄	506.99	1.2983		n-C.H.	128.259	1.5222	2.807	369	0.8529	-1.25	(0.5)	5 31	36	11
n-C ₃₆ H ₇₄	506.99	1.3307		n-C ₀ H ₂₀	128.259	1.5851		399	0.8395	- 1.89	(0.5)	5.41	37	11
C.H.	28.054	1.5269	3.0114	CH.	16.043	2.3053	2.6768	103.94	0.6623	0.186	(0.399)	2.23	38	42
с.н.	30.070	1.5816	3.112	CH.	16.043	2.3389	2.638	108	0.6762	-0.596	(0.32)	2.89	39	37
С.Н.	44.097	1.4089	3.267	CH.	16.043	2.3389	2.638	108	0.6024	-0.826	(0.45)	3.81	40	37
C ₃ H ₈	44.097	1 4089	3 267	C.H.	30.070	1 5816	3.112	108	0.8908	-0.485	(0.296)	3 19	41	37
cvcC2H13	84.162	1.2546	2.917	C(CH ₂)	72.151	1.6358	2.567	273	0.7669	-1.00	(0.5)	1 47	42	9
(C.H.)	154.212	1.0069	3.233	C.H.	78 114	1 2122	2 735	343	0.8307	-0.30	(0.5)	2.93	43	ó
BrC ₄ H ₆	157.010	0.6778	3.0445	C/H/	78.114	1.1578	2.864	308	0.5854	-0.026	(0.5)	2.25	43	49
CIC.H.	112.559	0.9155	2.9888	CH-C-H-	92.141	1.1726	2.9247	308	0.7807	-0.102	(0.5)	1.27	45	49
BrC.H.	157.010	0.6778	3 0445	СН.С.Н.	92 141	1 1726	2 9247	308	0.5780	-0.148	(0.5)	1.27	46	10
HBr	80.912	0.4363	2.833	HC	36 461	0.8563	2 594	195.4	0.5700	0.086	(0.273)	2 38	40	4
1.2-ChC.H.	147.004	0.7690	3,1844	2.2.4-TMP	114.232	1.4539	2.818	298	0.5095	-0.75	(0.526)	0.906	48	23
1.3-CLC.H.	147.004	0.7795	3.1327	л-С.Н.	163 541	1 4317	3 008	298	0.5445	-0.318	(0.51)	0.900	40	23
1.3-Cl ₂ C ₄ H ₄	147.004	0.7795	3.1327	2.2.4-TMP	114 232	1 4539	2 818	298	0.5445	-0.585	(0.48)	0.83	50	23
CCL	153.823	0.6125	2.929	C(CH ₃),	72.151	1.6358	2.567	273	0 3744	-0.50	(0.5)	1.83	51	9
Aniline	93.129	0.9785	2.963	C.H.	78.114	1.1374	2.915	293	0.8603	-0.23	(0.54)	1.50	52	41
Kr	83.800	0.4095	2.658	CH	16.043	2.4085	2.5621	115.8	0.1700	-0.027	(0.396)	3 37	53	1
Ar	39.948	0.7059	2.656	N,	28 013	1 2887	2 479	84	0 5477	-0.18	(0.5)	1.27	54	0
0,	31.999	0.82815	2.770	N ₂	28.013	1 2359	2 585	77	0.6700	-0.21	(0.5)	1.2,	55	ó
Xe	131.300	0.33733	2.664	Kr	83.800	0.4862	2.238	161.4	0.6938	-0.68	(0.468)	2 34	56	2
CIC+H	112.559	0.9155	2.989	C _c H _c	78.114	1.1578	2.864	308	0.7907	0.01	(0.5)	1 73	57	49
CCI	153.823	0.6311	2.843	cvcC ₂ H.	84.162	1.292	2.832	298	0.4885	0.01	(0.5)	1.69	58	9
BrC ₆ H,	157.010	0.6778	3.044	CIC_H.	112.559	0.9155	2.989	308	0.7403	0.0039	(0.5)	1.54	59	49
CH'I	141.939	0.4416	3.032	CHCl	119.373	0.6759	2.962	298	0.6532	0.024	(0.5)	0.874	60	24
CH ³ I	141.939	0.4416	3.032	C ₆ H ₆	78.114	1.1446	2.897	298	0.3857	0.36	(0.5)	1.286	61	24
-													(Contin	ued)

Table 2 (Continued)

Solute (1)	M_w (g mol ⁻¹)	v_1° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 1}^{\circ}$	Solvent (0)	M_w (g mol ⁻¹)	v_0° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 0}^{\circ}$	T (K)	v_1°/v_0°	$\frac{\Delta V_{\rm m}(x_1)_{\rm obs.}}{({\rm cm}^3 {\rm mol}^{-1})}$	n	No. (point)	Ref.
PIB	4.0×10^{4}	1.0906		$cycC_6H_{12}$	84.162	1.2921	2.833	298	0.84405	-0.00141(0.5)	1.35	62	14
PIB	4.0×10^{4}	1.0906		n-C5H12	70.153	1.6094	2.637	298	0.6776	-0.0127 (0.54)	1.97	63	16
PIB	4.0×10^{4}	1.0906		n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.7143	-0.00857(0.54)	1.80	64	16
PIB	4.0 × 10 ⁴	1.0906		n-C7H16	100.205	1.4721	2.928	298	0.7408	-0.00615(0.53)	1.69	65	16
PIB	4.0×10^{4}	1.0906		n-C ₁₀ H ₂₂	142.286	1.3769	3.094	298	0.7921	-0.0029 (0.53)	1.49	70	16
PIB	4.0×10^{4}	1.0906		n-C ₁₆ H ₃₄	226.448	1.2992		298	0.8394	-0.0008 (0.515)	1.31	71	16
PS	5.1×10^4 , 9.72 × 10 ⁴	0.9336		MEK	72.107	1.2502	2.962	298	0.7468	-0.008 (0.5)	1.76	72	17
PS	5.1×10^4 , 9.72 × 10 ⁴	0.9336		C ₂ H ₅ C ₆ H ₅	1 06.168	1.1592	3.0389	298	0.8054	-0.003 (0.46)	1.49	73	18
PS	5.1×10^4 , 9.72 × 10 ⁴	0.9336		$cycC_6H_{12}$	84.162	1.292	2.832	298	0.7225	-0.0014 (0.5)	1.53	74	19
PDMS	105	1.0312		C ₆ H ₆	78.114	1.1445	2.897	298	0.9011	-0.00077(0.39)	1.25	75	20
PDMS	105	1.0312		cycC ₆ H ₁₂	84.162	1.292	2.832	298	0.7980	0.00053(0.51)	1.33	76	20
C ₆ H ₆	78.114	1.1104	2.735	C(CH ₃) ₄	72.151	1.6359	2.567	273	0.6788	-0.50 (0.5)	0.81	77	9
CCl ₄	153.823	0.6312	2.843	Diethyl ether	74.123	1.4124	2.674	298	0.4469	-0.71 (0.5)	2.07	78	32
CHCl3	119.378	0.6759	2.962	Diethyl ether	74.123	1.4124	2.674	298	0.4786	-0.75 (0.5)	1.45	79	32
CH ₂ Cl ₂	84.933	0.7597	2.991	Diethyl ether	74.123	1.4124	2.674	298	0.5379	-1.34 (0.5)	0.79	а	32
C,H,N	79.102	1.0279	3.124	C ₆ H ₆	78.114	1.1445	2.897	298	0.8982	-0.201 (0.5)	1.14	ь	32
CHCI3	119.378	0.66247	3.0220	(C ₂ H ₅) ₃ N	101.193	1.3545	2.845	283	0.4891	-1.93 (0.5)	0.74	с	32
C ₆ H ₆	78.114	1.1445	2.897	Acetone	58.08	1.2718	2.829	298	0.8999	-0.07 (0.5)	1.82	d	32

^eIn the case of polymer solutions $\Delta v_m/v^\circ$ ^b2,2,4-TMP, 2,2,4-trimethyl pentane

Table 3 Excess volume of mixing Δv_m in region III

Solute (1)	<i>M</i> _w (g mol ^{−1})	v_1° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 1}^{\rm o}$	Solvent (0)	$M_{\mathbf{w}}$ (g mol ⁻¹)	v_0° (cm ³ g ⁻¹)	$V_{\rm c}/V_0^\circ$	T (K)	v_1°/v_0°	$\Delta V_{\rm m}(x_1)_{\rm ob}$ (cm ³ mol ⁻	a 38. -1)	n	No. (point)	Ref.
1,2-Cl₂C ₆ H₄	147.004	0.7690	3.1844	n-C ₈ H ₁₈	163.541	1.4317	3.008	298	0.6345	-0.414	(0.5)	-0.20	80	23
cycC ₆ H ₁₂	84.162	1.2844	2.849	n-C ₆ H ₁₄	86.178	1.5163	2.832	293	0.8479	0.15	(0.5)	0.60	81	9
C ₆ H ₆	78.114	1.1445	2.897	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.7497	0.46	(0.5)	0.12	82	9
CH3I	141.939	0.4416	3.032	CCl₄	153.823	0.6312	2.843	298	0.6995	0.112	(0.5)	0.20	83	24
I-ClC₄H₀	92.569	1.1573	2.912	Butan-2-ol	74.123	1.2665	2.855	313	0.9138	0.543	(0.41)	0.79	84	7
C6H6	78.114	1.1445	2.897	2,2,4-TMP	114.232	1.4539	2.818	298	0.7872	0.5	(0.5)	-0.65	85	22
PIB	4.0×10^{4}	1.0906		C ₆ H ₆	78.114	1.1445	2.897	298	0.9529	0.0034	(0.55)	0.25	86	13
NR [®]	4.0×10^{4}	1.0951		C ₆ H ₆	78.114	1.1445	2.897	298	0.9569	0.00089	(0.5)	0.83	87	12
C ₆ H ₆	78.114	1.1445	2.897	(C2H5)3N	101.193	1.3812	2.790	298	0.8286	0.005	(0.5)	-0.03	88	2
Acetone	58.080	1.2718	2.829	n-C ₆ H ₁₄	86.178	1.5267	2.812	298	0.8330	0.24	(0.5)	-0.56	89	32
CIC ₆ H ₅	112.559	0.9083	3.012	n-C ₈ H ₁₈	163.541	1.4317	3.008	298	0.6345	-0.046	(0.50)	-0.72	90	23

"In the case of polymer solutions $\Delta v_m/v^\circ$ "NR, natural rubber

Table 4 Excess volume of mixing Δv_m in region IV

Solute (1)	<i>M</i> _w (g mol ⁻¹)	v_1° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 1}^{\circ}$	Solvent (0)	M_w (g mol ⁻¹)	v_0° (cm ³ g ⁻¹)	$V_{\rm c}/V_{\rm 0}^{\circ}$	T (K)	v_1°/v_0°	$\frac{\Delta V_{\rm m}(x_1)_{\rm obs.}}{({\rm cm}^3{\rm mol}^{-1})}$	n	No. (point)	Ref.
Сн₄	16.043	2.211	2.791	Ar	39.948	0.7297	2.569	91	3.030	0.18 (0.5)	0.04	100	9
O2	31.999	0.8525	2.691	Ar	39.948	0.7059	2.656	84	1.208	0.14 (0.5)	0.94	101	9
HCI	36.461	0.8596	2.584	Xe	131.300	0.3669	2.449	195.4	2.343	0.64 (0.32)	- 1.06	102	3
HBr	80.912	0.4363	2.833	Xe	131.300	0.3656	2.449	195.4	3.380	0.198 (0.33)	0.21	103	4
N₂O	44.013	0.8063	2.745	Xe	131.300	0.3538	2.540	182.3	2.279	0.669 (0.39)	-0.65	104	6
n-C ₆ H ₁₄	86.178	1.5483	2.773	n-C ₆ F ₁₄	338.044	0.60933	2.146	308	2.541	5.38 (0.5)	-1.1	105	9
cycCH ₃ C ₆ H ₁₁	98.189	1.3707	2.734	$cycCF_3C_6F_{11}$	350.055	0.5976		338	2.294	7.30 (0.5)	-0.78	106	9
C ₆ H ₆	78.114	1.1445	2.897	CCl4	153.823	0.6311	2.843	298	1.814	0.01 (0.5)	-0.10	107	9
cycC ₈ H ₁₆	112.216	1.2018		1,2-Cl ₂ C ₆ H ₄	147.004	0.7690	3.184	298	1.5628	0.469 (0.47)	0.964	108	23
cycC ₈ H ₁₆	112.216	1.2018		1,3-Cl ₂ C ₆ H ₄	147.004	0.7795	3.132	298	1.5417	0.568 (0.52)	0.966	109	23
CHCl3	119.378	0.6759	2.962	CCl ₄	153.823	0.6312	2.843	298	1.0708	0.166 (0.5)	0.62	110	24
CH ₂ Cl ₂	84.933	0.7597	2.9912	CCl ₄	153.823	0.6312	2.843	298	1.2036	0.319 (0.5)	-0.196	111	24
C6H6	78.114	1.1448	2.897	p-Dioxane	88.107	0.9728	2.777	298	1.1765	-0.074 (0.25)	0.79	112	38
PDMS	10 ⁵	1.0312		CIC6H3	112.559	0.9415	2.906	298	1.0952	-0.0051(0.63)	0.20	113	20
o-Xylene	106.168	1.1416	3.0446	CCl₄	153.823	0.6312	2.843	298	1.8085	-0.0045(0.50)	0.78	114	32
C,H,N	79.102	1.0433	3.0777	CHCl3	119.378	0.6864	2.917	308	1.5201	-0.132 (0.5)	0.37	115	32
MEK	72.107	1.2509	2.9602	C ₆ H ₆	78.114	1.1445	2.897	298	1.0929	-0.116 (0.5)	0.72	116	32
CH3C6H2	92.141	1.1534	2.973	Aniline	93.129	0.97847	2.963	293	1.1788	-0.107 (0.468)	1.13	117	41
CHCl3	119.378	0.6819	2.936	CCl₄	153.823	0.6365	2.819	303	1.0415	0.615 (0.5)	0.68	118	49

"In the case of polymer solutions $\Delta v_{\rm m}/v^\circ$

DISCUSSION

It is of interest to refer to theoretical studies on Δv_m . An accurate and useful expression for Δv_m in simple liquid mixtures, known as the Redlich-Kister equation, is given by:

$$\Delta v_{\rm m} = x_0 x_1 [A_0 + A_1 (1 - 2x_0) + A_2 (1 - 2x_0)^2] \quad (22)$$

where A_i is a constant determined experimentally. On the other hand, Δv_m in this study is given by equation (16) with equation (19) for $Y(x_0)$ and there is only one adjustable parameter *n*, which is obtained by the best fit with the data. It is found that it is very difficult to predict Δv_m for a wide concentration range from equations (13) and (16) with equation (19) because a small error in concentration ($\Delta x_0/x_0 = 10^{-3} - 10^{-4}$) cause large errors in Δv_m of the order of $\Delta v_m/v_m \sim 10^{-3}$. In other words, data with very high accuracy are needed for the concentration and the specific volume of the mixture in predicting Δv_m as a function of concentration.

It was also found in this study that there is a strong correlation between the sign of $\Delta v_{\rm m}$ and v_1°/v_0° with mixtures with $v_1^{\circ}/v_0^{\circ} > 1$ giving $\Delta v_{\rm m} > 0$ and with $v_1^{\circ}/v_0^{\circ} < 1.0$ giving $\Delta v_{\rm m} < 0$ except for polymer solutions with $\Delta v_{\rm m} > 0$. Although we cannot explain this behaviour theoretically, it is reasonable to say that a geometrical packing of the molecules in the pure state has a dominant effect on the packing of different molecules in a mixture and on the excess volume of mixing.

A useful expression for Δv_m and other excess functions such as Δh_m and Δg_m have been derived by Rigby *et al.*³⁵, Mansoori *et al.*³⁶ and Flory *et al.* Good predictions are obtained by Flory *et al.* for Δv_m for simple liquid mixtures and polymer solutions^{9–20} where the excess volume is related to not only the volume of the pure components but also to the thermal expansion and thermal pressure coefficients in the pure state and an adjustable parameter X_{12} . It is emphasized here that the specific volumes of pure components and the parameter *n* are sufficient to predict the excess volume Δv_m and the procedure used for deriving Δv_m can be applied to derive Δh_m and Δg_m for a mixture.

ACKNOWLEDGEMENT

The authors wish to thank the Ministry of Education in Japan for supporting this work with a grant-in-aid for scientific research.

REFERENCES

- 1 Calado, J. C. G. and Staveley, L. A. K. Trans. Faraday Soc. 1971, 67, 1261
- 2 Calado, J. C. G. and Staveley, L. A. K. Trans. Faraday Soc. 1971, 67, 289
- 3 Calado, J. C. G., Kozdon, A. F., Morris, P. J., da Ponte, M. N., Staveley, L. A. K. and Woolf, L. A. J. Chem. Soc. Faraday 1 1975, 71, 1372
- 4 Calado, J. C. G., Gray, C. G., Gubbins, K. E., Palavra, A. M. F., Soares, V. A. M., Staveley, L. A. K. and Twu, C-H. J. Chem. Soc. Faraday 1 1978, 74, 893
- 5 Calado, J. C. G., Gomes de Azevedo, E. J. S., Clancy, P. and Gubbins, K. E. J. Chem. Soc. Faraday I 1983, 79, 2657
- 6 Machado, J. R. S., Gubbins, K. E., Lobo, L. Q. and Staveley, L. A. K. J. Chem. Soc. Faraday I 1980, 76, 2496

- 7 Nakata, M. and Sakurai, M. J. Chem. Soc. Faraday 1 1987, 83(8), 2449
- 8 Flory, P. J. J. Am. Chem. Soc. 1965, 87, 1833
- 9 Abe, A. and Flory, P. J. J. Am. Chem. Soc. 1965, 87, 1838
- 10 Höcker, H. and Flory, P. J. Trans. Faraday Soc. 1968, 64, 1188
- Orwoll, R. A. and Flory, P. J. J. Am. Chem. Soc. 1967, 89, 6822
 Eichinger, B. E. and Flory, P. J. Trans. Faraday Soc. 1968, 64,
- 2035
- 13 Eichinger, B. E. and Flory, P. J. *Trans. Faraday Soc.* 1968, 64, 2053
- 14 Eichinger, B. E. and Flory, P. J. Trans. Faraday Soc. 1968, 64, 2061
- 15 Eichinger, B. E. and Flory, P. J. Trans. Faraday Soc. 1968, 64, 2066
- 16 Flory, P. J., Ellenson, J. L. and Eichinger, B. E. Macromolecules 1968, 1, 279
- 17 Flory, P. J. and Höcker, H. Trans. Faraday Soc. 1971, 67, 2258
- Höcker, H. and Flory, P. J. Trans. Faraday Soc. 1971, 67, 2270
 Höcker, H., Shih, H. and Flory, P. J. Trans. Faraday Soc. 1971, 67, 2275
- 20 Flory, P. J. and Shih, H. Macromolecules 1972, 5, 761
- 21 Compostizo, A., Colin, A. C., Rubio, R. G. and Pena, M. D. J. Chem. Soc. Faraday I 1987, 83, 819
- 22 Aracil, J., Rubio, R. G., Caceres, M., Pena, M. D. and Renuncio, J. A. R. J. Chem. Soc. Faraday 1 1988, 84, 539
- Reyes Lopez Alanon, M., Caceres, M., Rubio, R. G. and Nunez, J. J. Chem. Soc. Faraday 1 1989, 85, 3425
- 24 Colin, A. C., Lezcano, E. G., Compostizo, A., Rubio, R. G. and Pena, M. D. J. Chem. Soc. Faraday I 1989, 85, 4295
- 25 Patterson, D. and Bardin, J. M. Trans. Faraday Soc. 1970, 66, 321
- 26 Streett, W. B. and Staveley, L. A. K. J. Chem. Phys. 1967, 47, 2449
- 27 Leonard, P. J., Henderson, D. and Barker, J. A. *Trans. Faraday* Soc. 1970, **66**, 2439
- 28 Longuet-Higgins, H. C. Proc. R. Soc. 1951, A205, 247
- 29 Snider, N. S. and Herrington, T. M. J. Chem. Phys. 1967, 47, 2248
- 30 Leland, T. W., Rowlinson, J. S. and Sather, G. A. Trans. Faraday Soc. 1968, 64, 1447
- 31 Rowlinson, J. S. Discuss. Faraday Soc. 1970, 49, 30
- 32 Rowlinson, J. S. and Swinton, F. L. 'Liquids and Liquid Mixtures', Butterworth Scientific, London, 1982
- 33 Saeki, S., Tsubokawa, M. and Yamaguchi, T. Polymer 1988, 29, 123
- 34 Marsh, K. N., McGlashan, M. L. and Warr, C. Trans. Faraday Soc. 1970, 66, 2453
- 35 Rigby, M., Alder, B. J., Sapse, A. M. and Hecht, C. E. J. Chem. Phys. 1970, 52, 3665
- 36 Mansoori, G. A. and Leland Jr, T. W. J. Chem. Soc. Faraday I 1972, 68, 320
- 37 Shana'a, M. Y. and Canfield, F. B. Trans. Faraday Soc. 1968, 64, 2281
- 38 Hyder Khan, V. and Subrahmanyam, S. V. Trans. Faraday Soc. 1971, 67, 2282
- 39 Dickinson, E. and Mciure, I. A. J. Chem. Soc. Faraday I 1974, 70, 2328
- 40 Delmas, G., Saint-Roman, P. D. and Purves, P. J. Chem. Soc. Faraday I 1975, **71**, 1181
- 41 Kigam, R. K. and Singh, K. C. J. Chem. Soc. Faraday I 1979, 75, 1120
- 42 Calado, J. C. G. and Soares, V. A. M. J. Chem. Soc. Faraday I 1977, 73, 1271
- 43 Stokes, R. H. and French, H. T. J. Chem. Soc. Faraday I 1980, 76, 537
- 44 Al-Kafaji, J. K. H. and Booth, C. J. Chem. Soc. Faraday I 1983, 79, 2695
- 45 Piekarski, H. and Somsen, G. J. Chem. Soc. Faraday I 1988, 84, 529
- 46 Apam-Martinez, D. and Trejo, A. J. Chem. Soc. Faraday I 1988, 84, 4073
- 47 Wormald, C. J. and Eyears, J. M. J. Chem. Soc. Faraday I 1988, 84, 3097
- 48 Kershaw, R. W. and Malcolm, G. N. Trans. Faraday Soc. 1968, 64, 323
- 49 Nigam, R. K. and Singh, P. P. Trans. Faraday Soc. 1969, 65, 950
- 50 Goates, J. R., Ott, J. B. and Snow, R. L. J. Chem. Soc. Faraday I 1984, 80, 3463